RAPID Model Input Files for Mekong-Indus-Ganges-Brahmaputra-Megna (MIGBM) River Basins

Main Authors: Sikder, Md. Safat, David, Cédric H., Allen, George H., Qiao, Xiaohui, Nelson, E. James, Matin, Mir A.
Format: info dataset Journal
Bahasa: eng
Terbitan: , 2020
Subjects:
Online Access: https://zenodo.org/record/3630795
Daftar Isi:
  • This database contains Inputs and intermediate files of the RAPID model pre-processor (RRR), and also outputs from the RRR (i.e., Inputs for RAPID); which were used by Sikder et al. [2019] to assess the performance of available global LSM runoffs in South and Southeast Asian river basins. If you use this RAPID Model Input Files for Mekong-Indus-Ganges-Brahmaputra-Megna (MIGBM) River Basins in your work, please cite: Sikder et al., [2019], Evaluation of Available Global Runoff Datasets Through a River Model in Support of Transboundary Water Management in South and Southeast Asia, Front. Environ. Sci., 7:171, https://doi.org/10.3389/fenvs.2019.00171. The database contains; Global River basin and Network Shapefiles: HydroSHEDS.tar.gz Extracted Basin Shapefile: MIGBM_basin.tar.gz Extracted River Network Shapefiles: MIGBM_res_ntwk.tar.gz (Note: res = fine or coarse) Catchment Files: rapid_catchment_as_riv_res.csv (Note: res = fine or coarse) Connectivity Files: rapid_connect_res_MIGBM.csv (Note: res = fine or coarse) Coordinate Files: coords_res_MIGBM.csv (Note: res = fine or coarse) Base Parameter Files: pfac_res_MIGBM_1km_hour.csv (Note: p = k or x; res = fine or coarse) Sort Files: sort_res_MIGBM_topo.csv (Note: res = fine or coarse) Sorted Basin Files: riv_bas_id_res_MIGBM_topo.csv (Note: res = fine or coarse) Coupling Files: rapid_coupling.tar.gz Parameter Files: rapid_param.tar.gz Volume Files: m3_riv_res_MIGBM_20000101_20091231_prj_LSMsr_tr_utc.nc (Note: res = fine or coarse; prj = GLDAS or GLDAS.2.0 or GLDAS.2.1 or ECMWF; LSM = CLM, MOS, NOAH, VIC, ERAint; sr = 10 or 025; tr = 3H or D) Other necessary links associated with this database: RAPID model: https://github.com/c-h-david/rapid RAPID model pre-processor (rrr): https://github.com/c-h-david/rrr GLDAS outputs: https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS ECMWF outputs: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim-land References: Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., et al. [2015], ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015 David, C. H., D. R. Maidment, G. Y. Niu, Z. L. Yang, F. Habets, and V. Eijkhout [2011], River network routing on the NHDPlus dataset, J. Hydrometeorol., 12, 913–934, https://doi.org/10.1175/2011JHM1345.1 Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, et al. [2004], The global land data assimilation system, Bull. Am. Meteorol. Soc. 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381 Sikder, M. S., C. H. David, G. H. Allen, X. Qiao, E. J. Nelson, and M. A. Matin [2019], Evaluation of Available Global Runoff Datasets Through a River Model in Support of Transboundary Water Management in South and Southeast Asia, Front. Environ. Sci., 7:171, https://doi.org/10.3389/fenvs.2019.00171