Data Set: Evaluation of Domain Randomization Techniques for Transfer Learning - Part 1

Main Authors: Grün, Silas, Höninger, Simon, Scheikl, Paul Maria, Hein, Björn, Kröger, Torsten
Format: info dataset
Terbitan: , 2019
Subjects:
Online Access: https://zenodo.org/record/2581311
Daftar Isi:
  • Transfer Learning Data Set: The total data set contains 1.44m synthetic images and 10k real-world images of size 299x224. Due to file size limitation, the data set is split into two sets. The first part (part 0: DOI 10.5281/zenodo.2581311) contains the real-world images and the synthetic images of perspective 00. This data set (part 1: DOI 10.5281/zenodo.2581469) contains perspective 01 and 10 of the synthetic images. 1. 10k real world images the filename labels the image: -first 6 digits represent the id. -8. digit labels the grasp: 0 -> no grasp, 1 -> grasp -10. digit is empty (reserved for 2nd perspective) -12. digit labels the graspbox: 0 -> green box, 1 -> yellow box -14. digit labels the distractors : 0 -> no distractors, 1 -> distractors -c in the end stands for acolor image, d is reserved for depth (not in use). 2. 1.44m synthetic images the folder labels the enabled technique: -first 2 digits label the perspective: 00 -> standard, 01 -> shake, 10 -> random -3. digit labels the graspbox: 0 -> defaul green box, 1 -> random box -4. digit labels the distractors: 0 -> no distractors, 1 -> distractors -5. digit labels the lighting: 0 -> default lighting, 1 -> random lighting -6. digit labels the mesh randomization: 0 -> default mesh color, 1 -> random mesh color the filename consists of 3 parts: -first 6 digits represent the id. -8. digit labels the grasp: 0 -> no grasp, 1 -> grasp -10.-15. digit equals the folder name and represents the enabled technique -c in the end stands for a color image, d is reserved for depth (not in use).