In situ detection of the protein corona in complex environments

Main Authors: Monica Carril, Daniel Padro, Pablo del Pino, Carolina Carrillo-Carrion, Marta Gallego, Wolfgang Parak
Format: Article
Terbitan: , 2017
Online Access: https://zenodo.org/record/1053342
Daftar Isi:
  • Colloidal nanoparticles (NPs) are a versatile potential platform for in vivo nanomedicine. Inside blood circulation, NPs may undergo drastic changes, such as by formation of a protein corona. The in vivo corona cannot be completely emulated by the corona formed in blood. Thus, in situ detection in complex media, and ultimately in vivo, is required. Here we present a methodology for determining protein corona formation in complex media. NPs are labeled with 19F and their diffusion coefficient measured using 19F diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy. 19F diffusion NMR measurements of hydrodynamic radii allow for in situ characterization of NPs in complex environments by quantification of protein adsorption to the surface of NPs, as determined by increase in hydrodynamic radius. The methodology is not optics based, and thus can be used in turbid environments, as in the presence of cells.
  • This work was supported by the German Research Foundation (DFG grant DFG Grant PA 794/25-1 to W.J.P.). Parts of this work were funded by MINECO (CTQ2015-68413-R to M.C.). M.C. acknowledges Ikerbasque for a Research Fellow position. C.C.-C. acknowledges MINECO for a Juan de la Cierva—Incorporación contract. P.d.P. acknowledges financial support from MINECO (RYC-2014–16962), the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016–2019, ED431G/09), and the European Union (European Regional Development Fund—ERDF). The authors acknowledge technical assistance by Javier Calvo for high-resolution mass spectroscopy measurements and Karsten Kantner for ICP-MS measurements.