Prediksi Harga Minyak Goreng Curah dan Kemasan Menggunakan Algoritme Long Short-Term Memory (LSTM)
Main Authors: | Hasibuan, Lailan Sahrina, Novialdi, Yanda |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | ind |
Terbitan: |
Departemen Ilmu Komputer, Institut Pertanian Bogor
, 2022
|
Subjects: | |
Online Access: |
http://journal.ipb.ac.id/index.php/jika/article/view/43710 http://journal.ipb.ac.id/index.php/jika/article/view/43710/24638 |
Daftar Isi:
- A very significant increase in the price of basic necessities will affect the economy of the Indonesian people, such as lowering purchasing power. Based on the monitoring of the Strategic Food Price Information Center from November 2021 to August 2022, cooking oil is a necessities that experienced a very significant increase of price in Indonesia. This increase was spread evenly across 34 provinces of Indonesia, including the province of West Java. This significant increase can be prevented by taking preventive actions before, if this increase has been predicted. Deep Learning is a supervised learning method that is widely used today because of its reliability in solving various problems in the field of data mining. Deep learning can predict future cooking oil prices using time series data. This study develops a model to predict the price of cooking oil in bulk and packaged form using deep learning that specifically manages time series data, namely Long Short Term Memory (LSTM). Based on the NRMSE evaluation metric, the model built is able to recognize the price fluctuation of cooking oil in the form of bulk and packaging. The NRMSE value of the LSTM model in the training process is 0.019 for bulk cooking oil data training, and 0.037 for packaged cooking oil data.
- Kenaikan harga bahan kebutuhan pokok yang sangat signifikan akan menimbulkan dampak negatif bagi perekonomian masyarakat Indonesia, salah satunya adalah penurunan daya beli. Berdasarkan monitor Pusat Informasi Harga Pangan Strategis dari November 2021 hingga Agustus 2022, minyak goreng merupakan salah satu bahan pokok yang mengalami kenaikan harga yang sangat signifikan di. Kenaikan ini tersebar merata di 34 provinsi Indonesia, termasuk provinsi Jawa Barat. Kenaikan yang signifikan ini dapat dicegah dengan melakukan tindakan preventif jauh hari sebelumnya, jika kenaikan ini telah diprediksi sebelumnya. Deep Learning merupakan metode supervised learning yang banyak digunakan saat ini karena kehandalannya untuk menyelesaikan berbagai masalah di bidang penambangan data. Deep learning dapat melakukan prediksi harga minyak goreng untuk masa yang akan datang menggunakan data deret waktu. Penelitian ini mengembangkan model untuk memprediksi harga minyak goreng berbentuk curah maupun kemasan menggunakan deep learning yang khusus mengelola data time serires yaitu Long Short Term Memory (LSTM). Berdasarkan metrik evaluasi NRMSE, model yang dibangun mampu mengenali pola harga minyak goreng berbentuk curah maupun kemasan. Nilai NRMSE model LSTM pada proses pelatihan adalah 0.019 untuk pelatihan data minyak goreng curah, dan 0.037 untuk data minyak goreng kemasan.