PENERAPAN TEXT MINING DATA TWEET TOKOPEDIA MENGGUNAKAN K-MEANS CLUSTERING
Main Authors: | Mawaddah, Mawaddah, Imro’ah, Nurfitri, Aprizkiyandari, Siti |
---|---|
Format: | Article info application/pdf eJournal |
Bahasa: | eng |
Terbitan: |
FMIPA Universitas Tanjungpura
, 2024
|
Online Access: |
http://jurnal.untan.ac.id/index.php/jbmstr/article/view/77706 http://jurnal.untan.ac.id/index.php/jbmstr/article/view/77706/75676601413 |
Daftar Isi:
- Media sosial yang sering digunakan untuk mengiklankan produk maupun jasa e-commerce salah satunya yaitu Twitter. Pelaku bisnis khususnya e-commerce harus bisa memilih konten yang disukai pelanggan yang ditandai dengan banyaknya jumlah retweet dan favorite pada konten yang diposting. Penerapan text mining menggunakan k-means clustering perlu diterapkan untuk mengolah data tweet yang besar guna membantu pelaku bisnis menentukan konten yang disukai followers. Data pada penelitian ini diambil dari username akun @tokopedia berupa data tweets dengan menggunakan bantuan R Studio pada tanggal 17 Desember 2022 yang memuat 3250 tweet yang telah diposting sebelum tanggal tersebut, yaitu dari tanggal 01 Oktober 2022 pukul 06.38 WIB hingga tanggal 16 Desember 2022 pukul 23.51 WIB. Selanjutnya, dilakukan proses text preprocessing, feature selection, dan pembobotan TF-IDF. Setelah melalui tahapan tersebut tweet kemudian dianalisis menggunakan k-means clustering dengan penentuan jumlah cluster terbaik menggunakan silhoutte coefficient. Kata tweets yang dikelompokkan secara garis besar terkait dengan kata yang dianggap menggambarkan atau merujuk pada promo Tokopedia, giveaway, dan kuis berhadiah. Metode k-means clustering digunakan untuk mengelompokkan tweet berdasarkan kesamaan pola dan karakteristik kata per kata yang terkandung dalam tweets Tokopedia dengan menggunakan pembobotan TF-IDF dan perhitungan jarak euclidean. Berdasarkan hasil clustering terdapat sembilan cluster terbaik. Rata-rata jumlah retweet dan favorite yang tinggi berdasarkan hasil clustering terdapat pada jenis konten diantaranya giveaway merchandise BTS dan cashback dari TokopediaxOppo (cluster 8); serta penawaran promo, diskon, dan cashback Tokopedia (cluster 3). Oleh karena itu, Tokopedia diharapkan dapat menggunakan jenis konten tweet tersebut sebagai sarana untuk meningkatkan minat followers. Kata Kunci : E-commerce, TF-IDF, Twitter, Silhoutte Coefficient.